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The Crystal Structure of Human Eukaryotic
Release Factor eRF1—Mechanism of Stop Codon
Recognition and Peptidyl-tRNA Hydrolysis

which are not codon specific and do not recognize co-
dons, stimulate class 1 release factor activity and confer
GTP dependency upon the process (Milman et al., 1969;
Grentzmann et al., 1994; Mikuni et al., 1994; Stansfield
et al., 1995a; Zhouravleva et al., 1995). Release factors
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were characterized initially in prokaryotes, where twoInstitute of Cancer Research
similar proteins, RF1 and RF2, function as class 1 release237 Fulham Road
factors, whereas a structurally unrelated protein, RF3,London, SW3 6JB
was identified as the class 2 release factor (Scolnick etUnited Kingdom
al., 1968). Both class 1 release factors recognize UAA;†Laboratory of Molecular Biophysics
however, UAG and UGA are decoded specifically by RF1University of Oxford
and RF2, respectively. Eukaryotic protein biosynthesisOxford, OX1 3QU
occurring on cytosolic ribosomes is terminated by theUnited Kingdom
release factors eRF1 and eRF3 (Frolova et al., 1994;‡Department of Biosciences
Stansfield et al., 1995a; Zhouravleva et al., 1995). Al-University of Kent
though eRF1 is the functional counterpart of prokaryoticCanterbury, CT2 7NJ
RF1 and RF2, the protein is unrelated in primary struc-United Kingdom
ture to the prokaryotic proteins and functions as an§Friedrich Miescher-Institut
omnipotent release factor, decoding all three stop co-Maulbeerstrasse 66
dons (Goldstein et al., 1970; Konecki et al., 1977; FrolovaCH-4058 Basel
et al., 1994). Class 2 factors (RF3 and eRF3) are GTP-Switzerland
binding proteins (Grentzmann et al., 1994; Zhouravleva
et al., 1995). RF3 is active as a GTPase on the ribosome
in the absence of RF1/2 (Freistroffer et al., 1997),Summary
whereas the eRF3 GTPase activity requires the addi-
tional presence of eRF1 (Frolova et al., 1996), possiblyThe release factor eRF1 terminates protein biosynthe-
because eRF1 and eRF3 form functional complexessis by recognizing stop codons at the A site of the
(Stansfield et al., 1995a; Zhouravleva et al., 1995). Over-ribosome and stimulating peptidyl-tRNA bond hydro-
expression studies in mammalian cells and in vitro re-lysis at the peptidyl transferase center. The crystal
constitution assays have indicated that eRF1 alone isstructure of human eRF1 to 2.8 Å resolution, combined
sufficient to promote efficient termination, implying thatwith mutagenesis analyses of the universal GGQ motif,
eRF3 is nonessential for the termination reaction in thesereveals the molecular mechanism of release factor
organisms (Frolova et al., 1994), although yeast viabilityactivity. The overall shape and dimensions of eRF1
is dependent on eRF3 (Stansfield et al., 1995a).resemble a tRNA molecule with domains 1, 2, and 3 of

The molecular mechanisms by which release factorseRF1 corresponding to the anticodon loop, aminoacyl
decode stop codons and promote ribosome-catalyzedacceptor stem, and T stem of a tRNA molecule, re-
peptidyl-tRNA hydrolysis remain obscure. Functionally,spectively. The position of the essential GGQ motif at
class 1 release factors mimic tRNA molecules. For ex-an exposed tip of domain 2 suggests that the Gln resi-
ample, a number of studies indicate direct interactionsdue coordinates a water molecule to mediate the hy-
between the stop codon and class 1 release factors.drolytic activity at the peptidyl transferase center. A
First, early studies from Tate and colleagues demon-

conserved groove on domain 1, 80 Å from the GGQ
strated that prokaryotic RF1 and RF2 are capable of

motif, is proposed to form the codon recognition site. being chemically cross-linked to stop codons encoded
within minimessenger RNA molecules when associated

Introduction with the ribosome (Tate et al., 1990; Brown and Tate,
1994). Extension of these studies suggested that RF2

Termination of protein biosynthesis and release of the also interacts with as many as three bases immediately
nascent polypeptide chain is signaled by the presence 39 to the stop codon (Poole et al., 1997). This is consis-
of an in-frame stop codon at the aminoacyl (A) site of tent with the discovery of base bias 39 to the stop codon
the ribosome. The process of translation termination is in both prokaryotes and eukaryotes (Brown et al., 1990;
universal and is mediated by protein release factors and Poole et al., 1995) and that in yeast and Escherichia
GTP (reviewed by Buckingham et al., 1997; Nakamura coli the bases flanking the stop codon influence the
and Ito, 1998). A class 1 release factor recognizes the efficiency of termination (Bonetti et al., 1995; Poole et
stop codon and promotes the hydrolysis of the ester al., 1995; Mottagui-Tabar et al., 1998). Second, release
bond linking the polypeptide chain with the peptidyl (P) factors catalyze the release of fMet from ribosome-fMet-
site tRNA, a reaction catalyzed at the peptidyl trans- tRNAfMet-stop codon complexes, in a release factor–
ferase center of the ribosome. Class 2 release factors, specific manner. For example, RF1 will catalyze the re-

lease of fMet from ribosomes loaded with fMet-tRNAfMet

in the presence of UAA or UAG but not UGA, whereas‖ To whom correspondence should be addressed (e-mail: dbarford@
icr.ac.uk). RF2 catalyzes release in the presence of UAA or UGA
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but not UAG. More recent data utilizing mini-mRNA tem- Overall Architecture
plates have indicated that release factors recognize the The polypeptide chain of eRF1 is organized into three
stop codon in frame with a sense codon at the P site domains of similar size with a structure reminiscent of
(Grentzmann and Kelly, 1997; McCaughan et al., 1998). the letter Y (Figure 1). Domain 2 is positioned on the
There is also evidence that the binding sites of tRNAs stem of the Y and participates in few interdomain con-
and release factors overlap at the A site of the ribosome, tacts with domain 3 and none with domain 1. All three
since the activity of release factors is competitive with domains belong to the twisted a-b sandwich architec-
that of suppressor tRNA molecules (Eggertsson and tural class, each with a mixed b sheet core surrounded
Soll, 1988). on both sides by a helices. The topologies of the three

The notion that release factors structurally mimic domains differ from one another and represent unique
tRNA molecules has been advanced to explain their folds. Domain 1 is composed of a four-stranded b sheet
functional mimicry (Moffat and Tate, 1994; Ito et al., surrounded on both sides by two a helices. Helices a-2
1996), prompted by the finding that the structure of the and a-3 form an anti parallel helix hairpin that packs
elongation factor EF-G (Ævarsson et al., 1994; Czwor- against one face of the b sheet to form a prominent
kowski et al., 1994) resembles the tRNA-EF-Tu complex groove at the helix–b sheet interface, a structural feature
(Nissen et al., 1995). On the basis of a proposed se- that may play a role in codon recognition. The N terminus
quence relationship between class 1 release factors and of the protein is formed by the a-1 helix of domain 1,
domains III-V of EF-G, which are reminiscent of the anti- which also creates the interface with domain 3. The
codon loop and T stem of a tRNA molecule, Nakamura connection to domain 2 is made by an extended region
and colleagues (Ito et al., 1996) suggested that class 1 of chain linking a-4 of domain 1 with the central b strand
release factors are structural mimics of tRNA molecules. of the b sheet of domain 2. The architecture of domain
Recently, sequence analysis of class 1 release factors 2 is characterized by the excursion of the N terminus of
revealed the existence of a GGQ sequence motif that is the a-5 helix by 25 Å away from the main body of the
universal to all species and critical for release factor domain. At the N terminus of this helix, and most remote
activity (Frolova et al., 1999). Substitutions of the motif- from the remainder of the molecule, the chain forms a
Gly residues abolished the ability of human eRF1 to

tight turn formed from residues of the conserved se-
trigger peptidyl-tRNA hydrolysis, suggesting that this

quence motif 181GRGGQS186 (Figure 2). This motif is con-
motif stimulates the hydrolytic activity of the peptidyl

nected to the edge b strand of domain 2 by an extended
transferase center (Frolova et al., 1999).

segment of chain lacking secondary structure. DomainsTo provide insights into the molecular mechanisms by
2 and 3 are bridged by a long a helix, kinked at thewhich eRF1 promotes hydrolysis of the peptidyl-tRNA
domain interface. Domain 3 deviates slightly from a stan-bond, decodes stop codons, and interacts with eRF3
dard a-b sandwich fold by the insertion between theand PP2A, and to address the question of tRNA mimicry,
a-10 helix and central b sheet of a disordered segmentwe determined the crystal structure of human eRF1 to
of chain (residues 334 to 369). Although a portion of this2.8 Å resolution and performed a functional analysis of
region forms a small structured b sheet, the majority ofthe role of the GGQ motif in yeast eRF1 (Sup45p). The
the residues are either poorly ordered or not visible instructure reveals a likely role for the conserved GGQ
the electron density map.motif at the peptidyl transferase center of the ribosome

and indicates the binding sites for eRF3 and PP2A. By
correlating sequence conservation data and the position

Comparison with Bacterial and Mitochondrialof yeast eRF1 mutants that enhance ribosomal stop
Class 1 Release Factorscodon readthrough, we have mapped the codon recog-
On average, the pair-wise sequence identity of eukary-nition region onto the molecule.
otic and Archaea class 1 release factors is 30%, sug-
gesting that the release factors from these two king-Results and Discussion
doms will share similar structures (Figure 2). In contrast,
no significant similarity exists between the eukaryoticStructure Determination
and Archaea RFs sequences and their prokaryotic andThe crystal structure of human eRF1 was determined
mitochondrial counterparts, suggesting the existenceusing a combination of MIRAS and MAD procedures,
of two distinct protein families (Frolova et al., 1994).yielding an interpretable electron density map at 3.1 Å
Moreover, we expect that these two families will adoptthat allowed the placement of over 80% of the protein
different protein architectures since a secondary struc-sequence, a process aided by seven selenomethionine
ture prediction based on 34 multiply aligned prokaryoticsites (Table 1). Refinement of the partial model using
RF1/RF2 and mitochondrial RF sequences indicated aCNS (Brünger et al., 1998) and the calculation of electron
pattern of a helices and b strands that would be incon-density maps from combined phases and later 2Fo-Fc

sistent with the 3-domain a-b organization of eRF1.maps allowed the remainder of the ordered regions of
Although the two families of release factors appearthe structure to be determined. The final structure in-

to be unrelated, a striking feature of all release factorscludes residues 5 to 422. Three regions of the polypep-
is the occurrence of a universal GGQ sequence motiftide are not visible in the electron density map and are
(Figure 2) (Frolova et al., 1999). Moreover, in all knownassumed to be disordered, namely residues 333–342
sequences, the GGQ motif occurs within a context richand 358–370 and 15 residues at the C terminus. The
in arginine and lysine residues, suggesting a universalworking and free R factors obtained using data between

30 and 2.8 Å are 0.246 and 0.314, respectively (Table 1). and essential function in release factor activities.
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Table 1. Crystallographic Data Statistics for Human eRF1

Data Collection and MIR Phasing Statistics

Data Set

Native HgCl2 TMLA TMLA 1 HgCl2

X-ray source (SRS) PX9.6 PX7.2 PX9.6 PX9.6
Wavelength (Å) 0.87 1.47 0.87 0.87
Resolution (Å) 2.7 3.2 3.0 3.5
Observations (N) 82,505 56,394 121,827 35,528
Unique reflections (N) 16,712 10,088 12,011 9,602
Completeness (%) 99.2 (98.0) 99.3 (97.2) 99.4 (100) 94.3 (98.0)
Anomalous completeness (%) — 95.5 (92.1) 99.5 (100) 84.6 (90.7)
Multiplicity 4.9 (3.5) 5.6 (3.5) 10.1 (6.7) 3.7 (3.7)
Rmerge

a (%) 5.0 (40.6) 5.7 (59.9) 6.6 (49.9) 5.8 (44.3)
Ranom (%) — 4.9 (46.6) 3.5 (17.8) 7.7 (29.3)
I/s 8.3 (1.9) 7.0 (1.2) 5.8 (1.5) 4.7 (1.7)

MIR Phasing Statistics
Rderi

b (%) 34.2 27.5 39.3
Heavy-atom sites (N) 3 1 4
Phasing powerd acentric/centric 1.46/0.93 1.07/0.69 1.53/1.00
Rcullis

c acentric/centric 0.76/0.81 0.89/0.89 0.78/0.81
Figure of meritf 0.75

MAD Data Collection and Phasing Statistics (EMBL, BW7A)

Data Set

l1 l2 l3 l4

Wavelength (Å) 0.9790 0.9793 0.9350 0.9789
Resolution (Å) 3.2 3.2 3.2 3.2
Rmerge

a (%) 5.4 (31.1) 5.4 (27.8) 4.7 (25.5) 5.3 (24.4)
Ranom (%) 6.6 (22.3) 5.3 (18.5) 5.4 (18.1) 7.0 (20.5)
Completeness (%) 99.9 (99.7) 99.9 (99.7) 99.8 (99.7) 99.8 (99.7)
Anomalous completeness (%) 99.9 (99.7) 99.8 (99.7) 99.8 (99.6) 99.5 (97.2)
Observations (N) 52,201 51,409 49,891 44,725
Unique reflections (N) 13,458 13,455 13,451 13,444
Multiplicity 3.9 (4.0) 3.8 (3.9) 3.7 (3.8) 3.3 (3.2)
I/s 8.2 (2.4) 8.2 (2.7) 9.1 (3.0) 8.0 (3.0)

MAD Phasing Statisticse

Phasing powerd acentric/centric 3.41/3.00 2.89/2.22 — 2.77/2.16
Anomalous phasing power 1.62 1.05 1.40 1.72
Rcullis

c acentric/centric 0.59/0.56 0.50/0.46 — 0.53/0.49
Anomalous Rcullis 0.82 0.94 0.88 0.79

Figure of meritf 0.81

Refinement Summary

Resolution range (Å) 20.0–2.8
Reflections (N) 14,553
Protein atoms (N) 3,228
Water molecules (N) 110
R valueg 24.6
Free R valueh 31.4
Deviation from idealityi

Bond lengths (Å) 0.014
Bond angles (8) 2.0

Values in parentheses are for the highest resolution shell.
a Rmerge 5 ShSj|,I(h). 2 I(h)j|/ShSj,I(h)., where ,I(h). is the mean intensity of symmetry-equivalent reflections.
b Rderi 5 S||FPH| 2 |FP||/S|Fp|, where |FPH| and |Fp| are the structure-factor amplitudes of the derivative and native data, respectively.
c Rcullis 5 S | (FPH 2 Fp) 2 FH |/S|FPH 2 FP |.
d Phasing power 5 FH/ERMS, where FP, FH and FPH are the structure factors for the native, heavy atoms, and derivative, respectively, and ERMS

is the residual lack of closure.
e MAD phasing was calculated as a special case of MIRAS, where l3 was used as native, and other wavelength data were used as individual
derivatives.
f Figure of merit after density modification.
g R value 5 S||Fobs| 2 |Fcalc||/S|Fobs|, where Fobs and Fcalc are the observed and calculated structure factors, respectively.
h The free R value was calculated using 6% of the data. Root-mean-square deviations relate to the Engh and Huber parameters.
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Figure 1. Orthogonal Views of eRF1

The figure indicates the position of the GGQ
sequence motif at the tip of domain 2 and
the suppressor mutant Arg-68 on the a-2/a-3
helix hairpin of domain 1. Figure produced by
MOLSCRIPT (Kraulis, 1991) and RASTER3D
(Merit and Murphy, 1994).

Role of the GGQ Motif in Translation Termination used to replace Gln-182 (Gln-185 in human eRF1) with
Leu, Arg, or Pro. In addition, Gly-180 or Gly-181 (equiva-To examine the role of the invariant Gln residue of the

GGQ motif in release factor activity, we tested the ability lent to Gly-183 and Gly-184 of human eRF1) was re-
placed with Ala, Val, or Asp to generate both single orof yeast eRF1 bearing substitutions of the GGQ motif

residues to support viability or to lead to a termination- double mutants. The termination defect was tested by
SUQ5 tRNASer-mediated stop codon readthrough of thedeficient phenotype. Site-directed mutagenesis was

Figure 2. Multiple Sequence Alignment of Class 1 Release Factors

Human eRF1, S. cerevisiae eRF1 (SUP45), and Archaea (Pyrococcus abyssi) RF1 were aligned using MULTALIGN (Barton, 1990). Invariant
residues are colored red. The GGQ motif is denoted with blue arrows, and the corresponding E. coli RF1 sequence is aligned below. Secondary
structure elements are indicated. Figure drawn using ALSCRIPT (Barton, 1993).
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eRF1 modified at any position 180, 181, or 182 was
lethal since no viable transformants were obtained on
5-fluoroorotic acid (FOA) selection (Figure 3B). Only sub-
stitutions of the GGQ motif residues caused lethality,
since mutations elsewhere in the GGQ minidomain (for
example S179R) had an identical phenotype to the wild-
type protein (P. M., H. M. W., and M. F. T., unpublished
data).

In addition to being nonfunctional, yeast eRF1 with
mutations of the GGQ motif Gly residues exhibits a domi-
nant-negative phenotype by permitting the weak ochre
suppressing SUQ5 tRNASer to translate the ade2-1 ochre
allele gene containing an internal in-frame ochre stop
codon. The double mutant G180A-G181A grew on Mini-
mal Medium lacking adenine whereas wild-type could
not, and those containing either the G180A or the G181A
change displayed a slow growth (Figure 3C). These data
indicate that the G180A-G181A mutant competes with
the wild-type protein for the internal ochre codon of the
ade2-1 gene, although it does not lead to a loss of
viability. Our results demonstrating that residues of the
GGQ motif are critical for the in vivo function of eRF1
agree with a recent study using an in vitro assay that
the ability of human eRF1 to trigger peptidyl-tRNA hy-
drolysis is abolished by alterations of the GGQ motif Gly
residues (Frolova et al., 1999). Human eRF1 with single
Gly substitutions is dominant-negative in vitro, inhibiting
the peptidyl-release activity of wild-type eRF1. More-
over, mutation of the GGQ motif Gly residues does not
impair the ability of eRF1, together with the ribosome,
to induce eRF3 GTPase activity (Frolova et al., 1999).
Our genetic data, together with the biochemical data of
Frolova et al. (1999), indicate that all residues of the
GGQ motif function to promote the hydrolytic activity
of the peptidyl transferase center but that the GGQ motif
is not involved in either codon recognition or ribosome
and eRF3 interactions.

Figure 3. Amino Acid Changes in the GGQ Motif Lead to Nonfunc-
Structure of the GGQ Motiftional eRF1 In Vivo in Yeast
Within the eRF1 structure, the GGQ motif is located onHaploid strain DLE2[pUKC803] in which the chromosomal
a turn connecting an extended region of b strand withsup45::HIS3 disruption is complemented by a URA3 plasmid encod-
the N terminus of the a-5 helix, a structural feature thating SUP45 was transformed with mutated derivatives of pUKC1901

and subsequently grown on either YEPD media (A) or Minimal Me- forms the tip of the eRF1 molecule and creates a self-
dium containing 5FOA (B and C). The plasmid, pRS315, which lacks autonomous GGQ minidomain (Figures 1 and 4). This
SUP45, was used as the control. minidomain is stabilized by conserved hydrophobic in-
(A) Four derivatives of this plasmid were tested that encode modified teractions involving Leu-176 and Pro-177 of the strand
eRF1 where GGQ has been modified as AGQ, GAQ, AAQ, or GGL,

and Phe-190 and Leu-193 of the a-5 helix. Pro-177 isrespectively. None of the mutants tested were dominant lethal at
invariant within all eukaryotic and Archaea RF1 sequences,308C. The double mutant G180A-G181A generated an Ade1 white
and the reduced flexibility of the protein main-chain con-phenotype.

(B) After loss of the URA3 plasmid, none of the mutants could sup- ferred by the proline may contribute to structural stabili-
port viability when compared to the wild-type-eRF1. Identical results zation. The conformation of the Gln-185 residue of eRF1
were obtained for the Q182R and Q182L mutants (data not shown). is stabilized by a network of hydrogen bonds involving
(C) The G180A, G181A, and G180A-G181A double mutants display invariant residues of the GGQ minidomain. Its side-chain
dominant-negative phenotypes, conferring adenine prototrophy on

amide group accepts a hydrogen bond from the guanidi-the strain.
nium group of the invariant Arg-189 residue and in turn,
the main-chain amide group of Arg-189 donates a hydro-

ochre ade2-1 allele leading to adenine prototrophy, gen bond to the hydroxyl-group of Ser-186. The GGQ
while viability was tested after elimination of the URA3 minidomain is abundant in Arg and Lys residues, a fea-
plasmid carrying wild-type eRF1. All the mutants grew ture that creates a marked positive electrostatic poten-
on selective or rich medium at 308C prior to the elimina- tial on the protein surface (Figure 4B).
tion of the wild-type eRF1 gene indicating that none of Class 1 release factors function to coordinate a water
them had a dominant-lethal effect over the wild-type molecule at the peptidyl transferase center of the ribo-
protein (Figure 3A). Elimination of the URA3 plasmid, some at the same position as an amino group of an A

site aminoacyl tRNA molecule. Nucleophilic attack ofcarrying the wild-type copy of eRF1, in cells producing
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Figure 4. Detailed View of the GGQ Minidomain

(A) Stereo view of residues Pro-177 to Leu-193. The view is rotated 1808 relative to Figure 1A.
(B) Solvent accessible surface and electrostatic potential of eRF1 viewed as in Figure 1A. The figure reveals the positive electrostatic potential
of the GGQ minidomain. Arg and Lys residues of the GGQ minidomain are labeled. Figure produced using GRASP (Nicholls et al., 1991).

the ester bond of the peptidyl-tRNA molecule in the P eRF3 and PP2A Interaction Sites Are Contained
within Domain 3site by a water molecule, promoted by a release factor at

site A, releases the nascent polypeptide chain, whereas Deletion mutagenesis studies combined with two-
hybrid and direct binding analyses have provided semi-attack by the amino group of an aminoacyl tRNA mole-

cule in site A elongates the polypeptide chain (Figure 5). qualitative information concerning the eRF3 binding site
on eRF1. Residues 281–415 of human eRF1 are neces-Apart from the difference in the nature of the nucleophilic

attacking group, these two reactions are essentially sary and sufficient for the interaction with eRF3 (Merku-
lova et al., 1999), a region that corresponds exactly toidentical and may share the same catalytic machinery

at the peptidyl transferase center. The position of the the core secondary structure of domain 3, demonstra-
ting that an intact domain 3 is required for eRF1-eRF3GGQ motif at the exposed tip of domain 2, its essential

function and universal occurrence in all class 1 release interactions. Crucially, loss of the highly conserved resi-
dues 411–415 abolishes eRF1 interactions with eRF3factors, suggests that the GGQ residues of this motif

play a direct role at the catalytic site of the peptidyl (Merkulova et al., 1999). Residues 410–415 form b-15,
one of the central b strands of the domain 3 b sheet,transferase center. We propose that Gln-185 of the GGQ

motif participates in the coordination of the water mole- and deletion of these residues would be likely to destabi-
lize the entire domain. The extreme C terminus of eRF1cule at the peptidyl transferase center responsible for

hydrolyzing the peptidyl-tRNA ester bond (Figure 5B). (residues 416–437), which is rich in acidic residues, is
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mimicry by class 1 release factors was proposed (Ito et
al., 1996). Our structure of eRF1 provides an opportunity
to assess these predictions. The overall shape and di-
mensions of eRF1 bear some resemblance to that of a
tRNA molecule (Figure 6). The width of eRF1 of 71 Å
matches the 70 Å of phenylalanine tRNA. However, al-
though, eRF1 and tRNA have a similar thickness of 27 Å
and z22 Å, respectively, eRF1 is some 15 Å longer than
tRNA. It is also possible that the conformation of eRF1
that we observe in the crystal differs from that bound
to the ribosome and/or the one in complex with eRF3.
Conformational flexibility of domain 2 relative to do-
mains 1 and 3 would be facilitated by the relatively few
interactions between domain 2 and the remainder of the
molecule.

A comparison of the eRF1 and tRNA structures sug-
gests that the functional similarities of these two mole-
cules are reflected in structural equivalencies. For exam-
ple, the GGQ motif of eRF1 is equivalent to the aminoacyl
group attached to the CCA-39 sequence of the amino-
acyl stem of a tRNA molecule. Both groups interact at
the peptidyl transferase center of the ribosome with
contrasting consequences (Figure 5). Consistent with
equivalent functional roles, both groups are located onFigure 5. Schematic of the Reactions Catalyzed at Peptidyl Trans-
exposed, distal positions of their respective molecules,ferase Center of the Ribosome
with the GGQ motif located on the tip of an extended b(A) Transesterification reaction.
turn a helix minidomain and the tRNA aminoacyl group(B) Proposed scheme for hydrolysis of the peptidyl-tRNA bond in

site P by a catalytic water molecule coordinated by Gln-185 of the on the CCA-39 acceptor stem (Figures 6 and 7). The
eRF1 GGQ motif in site A. similar and characteristic positions of the GGQ motif

and the aminoacyl group may allow equivalent interac-
tions with the peptidyl tranferase center, suggesting thatrequired for high-affinity eRF1/eRF3 interactions in bud-
domain 2 of eRF1 is the structural counterpart of theding and fission yeast (Ito et al., 1998; Eurwilaichitr et al.,
aminoacyl acceptor stem of tRNA. Another functional1999). However, studies with human eRF1 demonstrate
characteristic shared by eRF1 and tRNA is the associa-that a form of the protein lacking the C-terminal 22 amino
tion with the GTPases eRF3 and EF-Tu/eEF-1a, respec-acids is active as a release factor, stimulating hydrolysis
tively. EF-Tu interacts with the tRNA T stem and amino-of fMet-tRNAfMet. In addition, the protein is capable of
acyl acceptor stem, whereas eRF3 interacts with domaininteracting with eRF3 and stimulating eRF3 GTPase ac-
3 of eRF1, suggesting a functional equivalence betweentivity (Merkulova et al., 1999). Within the human eRF1
domain 3 of eRF1 and the T stem of tRNA. Domain 3 ofelectron density map, these residues are disordered and
eRF1 is structurally equivalent to the T stem of a tRNAare assumed to be mobile regions of the protein.
molecule (Figure 6).In addition to eRF3 interactions, domain 3 serves other

Previously, no functional role had been ascribed tofunctions. For example, in yeast, interactions with the
domain 1, although the structure of domain 1 is highlyribosome require the entire C terminus of eRF1 (Eurwilai-
conserved from eukaryotes to the Archaea, and replace-chitr et al., 1999), although ribosome interactions may be
ment of Arg-65 with a Cys residue in yeast eRF1 leadsmediated via eRF3 whose association with eRF1 would
to an omnipotent suppressor phenotype (Mironova ethave been diminished in these studies. In vertebrates,
al., 1986). Mapping the degree of conservation shared1% of the protein serine/threonine phosphatase PP2A
between eukaryotic eRF1 and Archaea RF sequencesis associated with eRF1 (Andjelkovic et al., 1996), an
onto the molecular surface reveals a prominent regioninteraction mediated by residues Thr-338 to Asn-381 of
of structural conservation, corresponding to a shallowdomain 3 of eRF1.
groove formed from the interface created by the antipar-
allel a-2 and a-3 helical hairpin and the central antiparal-Stop Codon Decoding Site and tRNA Mimicry
lel b sheet of domain 1 (Figure 7). The role of eRF1 toThe activities of class 1 release factors depend upon
interact both with stop codons and the peptidyl trans-their ability to recognize and interact with stop codons
ferase center suggests that the distance between theand concomitantly trigger the hydrolytic activity at the
codon and peptidyl-transferase interaction sites willpeptidyl transferase center. Release factors functionally
match that between the anticodon bases and the aminomimic tRNA molecules not only by recognizing mRNA
group of the aminoacylated tRNA molecule, a distancecodons within the small subunit but also by interacting
of z75 Å (Figure 7). Our proposal for the role of Gln-185at the peptidyl transferase center of the large subunit
of the GGQ motif implies that its side chain is equivalentand by association with a GTPase. To explain these
to the amino group of an aminoacyl-tRNA molecule. Thecharacteristics, and in the context of the structural simi-
site of structural conservation on domain 1 of eRF1 islarity between EF-G and a tRNA-EF-Tu complex (Nissen
situated z80 Å from the side chain of Gln-185. Thiset al., 1995) and the proposed sequence similarity be-

tween EF-G and E. coli RF1/RF2, the concept of tRNA groove and the associated exposed face of the a-2 and
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Figure 6. Molecular Mimicry of tRNA Mole-
cules

Ribbon diagram of eRF1 and yeast tRNAPhe

structures, revealing similar shapes and over-
all dimensions. The disposition of domains 1,
2, and 3 of eRF1 matches those of the tRNA
anticodon loop, aminoacyl stem, and T stem,
respectively. The site of attachment of an
aminoacyl group at the CCA stem is indi-
cated.

a-3 helices is likely to represent the stop codon interac- Conclusion
The crystal structure of eRF1 presented here, combinedtion site of eRF1, a notion suggested by its high struc-

tural conservation, the appropriate distance to the GGQ with an analysis of regions of structural conservation
throughout eukaryotes and the Archaea, coupled withmotif, and the overall size of the groove that matches

the anticodon bases of a tRNA (Figure 7). The small yeast eRF1 mutagenesis data, provides a framework
for understanding the molecular mechanisms of releasediscrepancy in distance between the GGQ motif and

proposed anticodon site of domain 1, and the tRNA factor activity. We propose that the GGQ motif triggers
the hydrolytic activity of the peptidyl transferase centerCCA stem and anticodon bases, may result from the

requirement to accommodate a catalytic water molecule by facilitating the coordination of a water molecule that
performs the nucleophilic attack onto the peptidyl-tRNAat the peptidyl transferase center. The model for codon

recognition involving domain 1 that we present here is ester bond. The universal and essential nature of a gluta-
mine argues in favor of a model whereby its amide sidesupported by a recent mutagenesis analysis of yeast

eRF1 by Stansfield and colleagues. Their analysis identi- chain functions to coordinate the catalytic water mole-
cule. Such a function for the Gln residue would be remi-fied novel omnipotent suppressor sup45 mutants that

are defective in the recognition of all three stop codons. niscent of the Gln residues at the catalytic sites of
GTPases (Scheffzek et al., 1997) and protein tyrosineHowever, these mutants exhibit increased ratios of UGA

relative to UAG stop codon suppression when com- phosphatases (Pannifer et al., 1998) that coordinate wa-
ter molecules for GTP and cysteinyl-phosphate hydroly-pared with those of the sup45-2 temperature-sensitive

allele, which has a general defect in ribosome binding sis, respectively. The peptidyl transferase activity of pro-
karyotic ribosomes involves the 23S RNA molecule(Stansfield et al., 1995b, 1997). This finding infers that

the novel mutations produce specific UGA stop codon (Noller et al., 1992). Conserved Gly and basic residues
of the GGQ minidomain may function to allow contactsrecognition defects. Strikingly, all mutations map to do-

main 1, with 7 out of 8 mutations situated on the a-2 with the phosphate backbone of either the peptidyl
transferase center RNA and/or the CCA stem of the Pand a-3 helices and b strands that line the proposed

codon recognition groove (I. Stansfield and G. Bertram, site tRNA molecule. A conserved groove present on
domain 1 is proposed to function as the codon recogni-personal communication).

The structure of the Thermos thermophilus ribosome tion site. The position of the groove relative to the GGQ
motif, the conservation of residues within the groove,in complex with tRNA at 7.8 Å resolution revealed that

the tRNA bound to the A site forms relatively few con- and the mapping of stop codon suppressor mutations
to this region, are all consistent with its role as thetacts with the ribosome, except for the anticodon loop

and aminoacyl stem (Cate et al., 1999). However, the A anticodon site of eRF1. The architecture of domain 1
bears no resemblance to the RNA recognition motifsite tRNA molecule packed close to and in parallel with

the P site tRNA molecule, bringing the amino acid at (RRM) characteristic of numerous RNA binding proteins
(Nagai et al., 1995). However, structures of aminoacylthe 39 end of the A site aminoacyl tRNA molecule into

close proximity with the peptidyl-tRNA bond of the P tRNA synthetases demonstrate that the tRNA anticodon
binding motifs of diverse protein architectures are capa-site peptidyl tRNA. A stop codon present at the A site

directs an eRF1 molecule to interact with the P site ble of mediating protein-RNA interactions. The pro-
posed codon recognition groove of eRF1 features polarpeptidyl-tRNA in a manner analogous to that of an

aminoacyl tRNA molecule. These functional require- and hydrophobic residues, consistent with the observed
nature of protein-RNA interactions.ments of eRF1 impose structural constraints upon the

molecule, which may be satisfied by adopting a similar Our structural data allows a reevaluation of the tRNA
mimicry hypothesis. The structure of eRF1 displaysoverall structure to a tRNA molecule.
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Figure 7. Molecular Surface Views of eRF1 and Yeast tRNAPhe

(A) Molecular surface of eRF1 revealing regions of high to low sequence conservation between eukaryotic eRF1 and Archaea RF sequences,
corresponding to a color ramp from red to blue, respectively. The figure depicts the conserved groove present on domain 1, and invariant
residues including the NIKS motif (residues 62–65) are labeled. The molecule is rotated 908 relative to the view in Figures 1A and 4B.
(B) View of yeast tRNAphe showing the relative disposition of the anticodon bases and the amino group of an aminoacyl residue attached to
the CCA stem. The distance between these sites matches the distance between the conserved groove on domain 1 of eRF1 and Gln-185 of
the GGQ motif.

(Pharmacia), and gel filtration using a Superdex 75 column (Phar-some similarities to a tRNA molecule, consistent with
macia). The eluted protein was concentrated to z10 mg/ml for crys-the functional similarities of release factors and tRNA,
tallizations.although these are not as envisaged by Ito et al. (1996).

Our prediction that the family of prokaryotic and mito-
Crystallization and Heavy Atom Derivativeschondrial class 1 release factors differs in structure from
Crystals of human eRF1 were grown at 208C by hanging drop vapor

their eukaryotic/Archaea counterpart suggests that diffusion. Equal volumes of protein solution were mixed with the
these two families of release factors evolved indepen- precipitant solution (100 mM HEPES [pH 7.5], 14%–22% (w/v) PEG
dently from one another, implying that release factor 4000, 15% (v/v) glycerol, and 200 mM NaCl). The crystals reached

typical dimensions of 0.5 mm 3 0.4 mm 3 0.4 mm over a periodactivity mediated by proteins may have evolved subse-
within 1 week. Heavy-atom derivatives were prepared by soakingquently to the divergence of the prokaryotes from the
the crystals in stabilizing solutions containing 2 mM HgCl2 (18 hr),eukaryotes and Archaea. The occurrence of a universal
20 mM tri-methyl lead acetate (TMLA, 2 weeks), and 2 mM HgCl2 1

GGQ motif in all release factors may reflect the highly 20 mM TMLA (12 hr), respectively, before data collection.
conserved structure of the peptidyl transferase center
in all ribosomes or, as proposed by Frolova et al. (1999), Data Collection and Structure Determination
the requirement to interact with the invariant CCA stem Structure determination was achieved using a combination of
of the P site peptidyl-tRNA molecule. MIRAS and MAD methods. Crystals were transferred to the stabiliz-

ing solution including 25% (v/v) glycerol and fast frozen in a nitrogen
gas stream at 100 K. Data were processed with MOSFLM and CCP4
(CCP4, 1994). The crystals belong to the space group P43212, withExperimental Procedures
the cell parameters a 5 b 5 77.08 Å, c 5 194.44 Å with a solvent
content of 56%.Cloning and Protein Purification

Human eRF1 was overproduced using a bacterial expression system Heavy-atom parameters were refined and phases calculated with
MLPHARE (Otwinowski, 1991; CCP4, 1994). The initial electron den-(Andjelkovic et al., 1996). The protein was purified using Ni-NTA

agarose chromatography, anion exchange with a Mono Q column sity map was improved by solvent flattening using the program DM
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