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SUMMARY

During translation termination, class II release
factor RF3 binds to the ribosome to promote
rapid dissociation of a class I release factor
(RF) in a GTP-dependent manner. We present
the crystal structure of E. coli RF3�GDP, which
has a three-domain architecture strikingly simi-
lar to the structure of EF-Tu�GTP. Biochemical
data on RF3 mutants show that a surface region
involving domains II and III is important for dis-
tinct steps in the action cycle of RF3. Further-
more, we present a cryo-electron microscopy
(cryo-EM) structure of the posttermination
ribosome bound with RF3 in the GTP form.
Our data show that RF3�GTP binding induces
large conformational changes in the ribosome,
which break the interactions of the class I RF
with both the decoding center and the
GTPase-associated center of the ribosome, ap-
parently leading to the release of the class I RF.

INTRODUCTION

Protein synthesis is in all organisms terminated by a class I

release factor (RF) binding to a ribosome whose A site is

programmed with a stop codon and whose P site is bound

with peptidyl-tRNA. The bacterial class I RFs, RF1 and

RF2, recognize the stop codons UAG/UAA and UGA/

UAA, respectively (Scolnick et al., 1968), while the single

eukaryotic class I RF eRF1 recognizes all three stop

codons (Frolova et al., 1994). Class I RFs release newly

synthesized proteins from the ribosome by triggering
hydrolysis of the ester bond in peptidyl-tRNA, presumably

through contact between the universally conserved GGQ

motif (Kisselev et al., 2003) and the peptidyl-transfer cen-

ter (PTC) of the ribosomal 50S subunit (Nakamura and Ito,

2003). Genetic analysis has identified highly conserved tri-

peptide motifs in the bacterial class I RFs, which are di-

rectly involved in stop codon recognition in the decoding

center (DC) of the small ribosomal subunit (Ito et al.,

2000). The crystal structures of RF1 and RF2 have a com-

pact, ‘‘closed’’ form, with distances between the codon

recognition and GGQ motifs that are much shorter than

the DC-PTC distance (Vestergaard et al., 2001; Shin

et al., 2004). However, cryo-EM (Rawat et al., 2003,

2006; Klaholz et al., 2003) and recent X-ray crystallo-

graphic studies (Petry et al., 2005) show that ribosome-

bound RF1 and RF2 possess similar ‘‘open’’ conforma-

tions, distinguished from the closed crystal forms of the

isolated factors by large domain movements. These

open conformations grant simultaneous access of the

codon recognition and GGQ motifs to the DC and PTC,

respectively. A recent small-angle X-ray scattering study

revealed that RF1 in solution adopts a similar open config-

uration as ribosome-bound RF1 (Vestergaard et al., 2005),

suggesting that the functional relevance of the crystal

forms of RF1 and RF2 may be confined to the methylation

of the Gln in the GGQ motif by the methyl-transferase

PrmC (Graille et al., 2005).

The class II RFs, eRF3 in eukaryotes (Stansfield et al.,

1995; Zhouravleva et al., 1995) and RF3 in bacteria

(Grentzmann et al., 1994; Mikuni et al., 1994), are small

GTPases. The function of RF3 is to remove RF1 or RF2

from the ribosomal A site after peptide release from the

peptidyl-tRNA in the P site (Freistroffer et al., 1997). RF3

is one of the four major GTPases that participate in

mRNA translation, with the other ones being initiation
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Figure 1. Crystal Structure of RF3�GDP and Its Comparison with Other Translational GTPases

(A) RF3�GDP, (B) EF-Tu�GTP (Kjeldgaard et al., 1993; 1EFT), and (C) EF-Tu�GDP (Song et al., 1999; 1EFC). Ribbon diagrams are drawn with G domain

in the same orientation. Domains G0, G, II, and III of RF3�GDP are colored in wheat, yellow, lime green, and light blue, respectively, with the linker

regions between domains in light gray. Switch 1 and 2 regions are colored in cyan and red, respectively. Bound nucleotide is shown as stick model,

and Mg2+ ion is shown as a sphere.

(D, E, and F) Superposition of G domain of RF3�GDP with those of EF-G�GDP and EF-Tu�GTP. G0 domain of RF3�GDP, wheat; the rest of

RF3�GDP, yellow; G0 domain of EF-G�GDP, pink; the rest of EF-G�GDP, cyan; EF-Tu�GTP, green; switch 1 of EF-G�GTP, cyan; switch 2 of
930 Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc.



factor 2 (IF2), elongation factor Tu (EF-Tu), and elongation

factor G (EF-G). Various studies have indicated that the G

domains of these GTPases interact with the ribosome at

a conserved site near the sarcin-ricin loop (SRL), and it

is believed that this interaction is responsible for their ribo-

some-dependent GTPase activities (Stark et al., 1997;

Agrawal et al., 1998; La Teana et al., 2001; Klaholz et al.,

2004; Allen et al., 2005).

During its working cycle, RF3 enters the ribosome in

complex with GDP (Zavialov et al., 2001). This binding

event results in rapid exchange of GDP for GTP, provided

that there is a class I RF in the A site and a deacylated

tRNA in the P site (Zavialov et al., 2002). Separately,

RF3, in complex with the noncleavable GTP analog

GDPNP and RF1/RF2, has high affinity to the posttermina-

tion ribosome, but RF1/RF2 and RF3�GDPNP destabilize

each other’s binding to the posttermination ribosome with

a deacylated P-site tRNA so that the presence of

RF3�GTP is expected to greatly accelerate the dissocia-

tion of RF1/RF2 (Zavialov et al., 2001). From these obser-

vations it was postulated that GDP-to-GTP exchange on

RF3 requires formation of a ribosome structure with high

affinity to RF3�GTP (Zavialov et al., 2002). Until now, no

structural information has been available for RF3 in

support of this concept. For EF-G and IF2, large confor-

mational changes of the ribosome have indeed been ob-

served in conjunction with the removal of the peptide

from the P-site-bound tRNA, characterized as a ratchet-

like rotation of the 30S subunit relative to the 50S subunit

(Frank and Agrawal, 2000; Valle et al., 2003; Allen et al.,

2005). At the end of the RF3 working cycle, class I RF dis-

sociation is followed by rapid hydrolysis of GTP on RF3

and swift release of RF3�GDP from the ribosome (Zavialov

et al., 2001, 2002).

Recently, Klaholz et al. (2004) reported a cryo-EM study

of RF3 in complex with GDPNP when present in a peptide-

free release complex (RC; a complex consisting of the

ribosome with a stop codon in the A site and a peptidyl-

tRNA in the P site). Surprisingly, interpreted from two den-

sity maps at resolutions of 24 Å and 25 Å, the complex was

seen in two states that differed in the conformations of

both the ribosome and RF3, as well as in the location of

tRNA. The fact that RF3 in complex with GDPNP is known

to bind very stably to the peptide-free RC (Zavialov et al.,

2001) raises the question whether the structures obtained

by Klaholz et al. (2004) represent RF3 in the authentic GTP

form.

Here we describe the crystal structure of E. coli RF3 in

the GDP-bound state. It has three distinct domains and

is remarkably similar in conformation to the crystal struc-

ture of EF-Tu�GTP. Moreover, we present a cryo-EM den-

sity map of ribosome-bound RF3�GDPNP. Docking the

crystal structure of RF3�GDP into the density map of the
ribosome-bound RF3�GDPNP reveals that the binding of

RF3�GDPNP leads to large conformational changes of

the ribosome, which cause rapid dissociation of the class

I RFs. These results, together with in vitro studies of RF3

mutants identified from the crystal structure of RF3�GDP,

have now allowed a structural interpretation of previous

biochemical data regarding RF3’s mode of action (Zavia-

lov et al., 2001, 2002; Zavialov and Ehrenberg, 2003).

RESULTS

Crystal Structure of RF3�GDP

The polypeptide chain of RF3�GDP is folded into three

distinct domains (Figure 1A). Domain I (residues 3–278)

is composed of a classic GTPase domain (G domain)

and an ‘‘EF-G-like’’ G0 subdomain (Laurberg et al., 2000;

Czworkowski et al., 1994). Domain I is connected to

domain II (residues 294–387) by a peptide stretch with

a small antiparallel b sheet in the middle (residues 279–

293). Domain II forms a b-barrel structure as observed in

EF-Tu (Song et al., 1999), eRF3 (Kong et al., 2004), and

EF-G (Czworkowski et al., 1994). Domain II is connected

to domain III (residues 391–529) by a short peptide linker.

Domain III, composed of a central b-barrel flanked by two

a helices, may represent a novel fold since no structural

homolog was found in a Dali search.

Comparison of RF3�GDP and EF-G�GDP

Sequence analysis suggests the structures of RF3 and

EF-G to be similar (Kisselev and Buckingham, 2000). To

verify this prediction, we compared the crystal structure

of RF3�GDP with that of a His573Ala mutant of EF-G

(Laurberg et al., 2000). Superposition of the RF3�GDP do-

mains G and G0, including the switch 2 region and the

b-meander in the G0 subdomain, onto the corresponding

EF-G�GDP domains, reveals great core domain similarity

between the two translation factors (root-mean-square

deviation (rmsd) = 1.5 Å; Figure 1D). There are, however,

also notable differences between the two structures. First,

helix a6 of G0 domain in RF3�GDP has no counterpart in

EF-G�GDP. Second, helix a7 of RF3�GDP and the corre-

sponding helix A of EF-G�GDP have distinct conforma-

tions with relative shifts of the equivalent Ca atoms up to

7 Å. Third, while helix a8 of RF3�GDP matches part of helix

C of EF-G�GDP, helix B of EF-G�GDP has no counterpart

in RF3�GDP (Figure 1E). These structural differences are

in line with sequence differences in these regions of the

two molecules (Figure S1).

Domain II of RF3�GDP and EF-G�GDP are quite similar,

with an rmsd of 1.4 Å as estimated by superposition of the

two domains. When G domain of RF3�GDP is superposed

on that of EF-G�GDP, the orientations of domain II differ

by only 13� (Figure 1D). Notably, the switch 1 region is
RF3�GDP, red; and switch 2 regions of EF-G�GDP and EF-Tu�GTP, blue. The orientations of (D) and (E) are related by a 90� rotation around

y axis.

(G) Nucleotide-binding sites of RF3�GDP. RF3�GDP is in yellow; a portion of the switch 2 region is in green and pink for EF-Tu�GDP and

EF-G�GDP, respectively.
Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc. 931



disordered in both RF3�GDP and EF-G�GDP, and beyond

domain II there is no structural similarity between the two

molecules (Figure 1D).

The Structures of RF3�GDP and EF-Tu�GTP

Are Similar

The tertiary structure of RF3�GDP is distinct from that of

EF-Tu�GDP (Figure 1C) but is markedly similar to that of

EF-Tu�GDPNP (EF-Tu�GTP; Figure 1B). The rmsd for

the superposed domains I and II of RF3�GDP and EF-

Tu�GDPNP is only 1.6 Å, and their switch 2 regions are

strikingly similar (Figure 1F). The switch 1 region of

RF3�GDP is disordered, but the structural similarities of

the switch 2 regions and the whole G domains of EF-

Tu�GTP and RF3�GDP suggest similar conformations

also for their switch 1 regions. There is, in contrast, no

match between domain III of RF3�GDP and EF-Tu�GTP

due to their distinct overall folds (Figure 1F).

The Guanine Nucleotide-Binding Site of RF3�GDP

The interactions of the guanine moiety, the ribose ring, and

the a-phosphate of GDP with the RF3 protein residues are

very similar to the GDP interactions for EF-Tu (Song et al.,

1999), EF-G (Laurberg et al., 2000), and eRF3 (Kong et al.,

2004). A unique structural feature of RF3�GDP is the loca-

tion of a conserved His92 residue in the switch 2 region,

which at the sequence level corresponds to His84 for

EF-Tu and His87 for EF-G (Figure S1). His92 is well defined

in the electron density map and makes multiple contacts

with the b-phosphate group of GDP (Figure 1G), suggest-

ing that it contributes to the high-affinity binding of GDP

to RF3 (Zavialov et al., 2001). In contrast, His84 in

EF-Tu�GDP and His87 in EF-G�GDP are separated

by �10 Å from GDP (Figure 1G). As will be described be-

low, His92 may also be involved in the triggering of

GTP hydrolysis on ribosome-bound RF3, possibly by

the same mechanism as proposed for His84 in EF-Tu

(Kjeldgaard et al., 1993).

Mg2+ ions are considered to be essential cofactors for

GTP hydrolysis in all G proteins. However, no Mg2+ ion

was observed in the crystal structure of RF3�GDP, al-

though the crystallization buffer contained 5 mM MgCl2.

In contrast, residues Asp50 and Asp80 of EF-Tu, corre-

sponding to Asp58 and Asp88 of RF3, respectively

(Figure S1), coordinate an Mg2+ ion in the crystal struc-

tures of both EF-Tu�GDP and EF-Tu�GTP (Kjeldgaard

et al., 1993; Song et al., 1999). In the structure of

RF3�GDP, Asp58 of switch 1 is disordered, and Asp88

of switch 2 is too far away to coordinate Mg2+ in its putative

binding site (Figures 1A and 1G). It is, moreover, not un-

likely that the presence of the positively charged His92 in

RF3 further reduces the affinity of Mg2+ so that all these

features could explain why Mg2+ is absent in the crystal

but, by hypothesis, not in the native structure of RF3�GDP.

Biochemical Analysis of RF3 Mutants

Mapping of the sequence conservation shared by prokary-

otic RF3 proteins on the surface of the crystal structure of
932 Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc.
RF3�GDP reveals two conserved patches. One is in the

guanine nucleotide-binding region, including His92, and

another in the interface between domains II and III (Fig-

ure 2A). To clarify the functional roles of these conserved

surface regions, the RF3 variants H311A, R312A, E396A,

Q445A, V448A, R452A, E456A, and Y457A were created

by site-directed mutagenesis, expressed in E. coli, and

purified to homogeneity. Mutation of His92 to Ala, Asn, or

Asp either inhibited protein expression or resulted in an in-

soluble protein. However, a highly soluble double mutant

His92Ala Pro90Gln (H92A P90Q) and, as a control, a single

P90Q mutant could be expressed and purified.

We studied the ability of the wild-type and mutated var-

iants of RF3 to accelerate recycling of RF1 or RF2 during

termination on a RC containing an MFTI tetrapeptidyl-

tRNAIle in the P site and a UAA stop codon in the A site.

In these experiments, the ribosomes were present in ex-

cess, and each class I release factor had to recycle

many times for complete termination (Freistroffer et al.,

1997; Zavialov et al., 2001). We found an approximately

10-fold acceleration of recycling of both RF1 and RF2 by

wild-type RF3. The recycling activities of the R312A,

E396A, Q445A, and V448A mutants were similar to, or

slightly lower than, those of wild-type RF3. The E456A

and Y457A mutants had significantly, and the H311A

and R452A mutants had strongly, reduced recycling activ-

ities compared to those of wild-type RF3. The recycling

activity of the H92A P90Q double mutant was virtually

zero, while the single P90Q mutation had an insignificant

effect on the recycling activity (Figure 2B; Table S1).

The RF3 mutants H311A, R452A, and H92A P90Q, with

strongly reduced recycling activities, were subjected to

further studies relating to their guanine nucleotide-binding

affinities and GDP exchange rates off, as well as on, RC.

From nitrocellulose-filter binding (Zavialov et al., 2001),

the dissociation equilibrium constants (KD-GDP) for GDP

binding to free RF3 were estimated as 5.6 nM (wild-

type), 6.7 nM (H311A), 6.6 nM (R452A), and 18 nM

(H92A P90Q). In experiments where radio-labeled GDP

was chased from RF3 by unlabeled and repurified GTP,

the ratio KD-GTP/KD-GDP between the dissociation equilib-

rium constants for GTP (KD-GTP) and GDP (KD-GDP) was

estimated for each one of these RF3 mutants. The ratios

for the wild-type, H311A, and R452A RF3 variants were

similar and about 2-fold larger than the ratio for the

H92A P90Q double mutant (Table S2; Figure S2).

The rates of GDP exchange for these mutants were

estimated from stopped-flow experiments in which a solu-

tion with RF3-bound mant-GDP was rapidly mixed with

a solution containing native GDP followed by recording

of the time-dependent fluorescence decrease (Moore

et al., 1992; Remmers et al., 1994). In line with the esti-

mates for the equilibrium dissociation constant, the GDP

dissociation rate constants were similar for the wild-type

(0.036 s�1), H311A (0.036 s�1), and R452A (0.032 s�1) var-

iants and were a little more than 2-fold larger for the H92A

P90Q (0.080 s�1) variant and a little less than 2-fold larger

for the P90Q (0.060 s�1) single mutant. Very similar rate



Figure 2. Effects of Mutations in the Conserved Regions of

RF3

(A) Molecular surface of RF3�GDP (same view as in Figure 1A) showing

regions of high to low sequence conservation shared by the prokaryotic

RF3 proteins.
constants for GDP dissociation from these RF3 variants

were estimated by nitrocellulose-binding experiments in

which radio-labeled GDP was chased from RF3 by unla-

beled GDP (data not shown).

We used stopped-flow to study also the rates of mant-

GDP exchange for native GDP when solutions of mant-

GDP bound RF3 variants were rapidly mixed with a solution

of RF2-containing RC. The effective GDP dissociation rate

constant was largest for wild-type RF3 (10.5 s�1) and fac-

tors of 50, 9, or about 30 smaller for the H311A (0.19 s�1),

R452A (1.2 s�1) and H92A P90Q (0.31 s�1) variants, re-

spectively. The effective GDP dissociation rate constant

for the single P90Q mutant (5.6 s�1) was just 2-fold smaller

than for the wild-type RF3, suggesting that the greatly

reduced GDP exchange rate by the H92A P90Q mutations

was mainly due to the H92A, rather than to the P90Q alter-

ation (Figure 2C; Table S2).

Reconstruction of the Peptide-free RC Bound

with RF3

The above described in vitro system for mRNA translation

(Zavialov et al., 2001) was used to prepare RCs. Subse-

quent addition of RF3, GDPNP, and puromycin–to remove

the tetrapeptide from the P-site tRNA–led to a stable

structure of the peptide-free RC bound with RF3 in the

GTP form (henceforth to be referred to as RF3-bound

RC). This complex represents an intermediate state of

termination, i.e., after dissociation of the class I RF and be-

fore GTP hydrolysis and dissociation of RF3, and we ob-

tained its structure by using cryo-EM and single-particle

reconstruction (see Experimental Procedures). The EM

density map exhibits the typical features of the 70S ribo-

some, with two additional densities (Figures 3A and 3B).

One is attributed to tRNA with its anticodon in the P site

of the 30S ribosomal subunit and its CCA end in the E

site of the 50S ribosomal subunit, i.e., a hybrid P/E-site

tRNA. The other density is attributed to RF3 and appears

in the highly conserved factor-binding region at the en-

trance of the ribosomal intersubunit surface, where it con-

tacts both the small and large ribosomal subunits.

Docking of Atomic Structures into the EM

Density Maps

To obtain an atomic model of the RF3-bound RC in the

GTP form, we docked the crystal structures of the E. coli

70S ribosome (Schuwirth et al., 2005) and RF3�GDP into

our EM density map using real-space refinement (Chap-

man, 1995; Gao et al., 2003). Comparison of the crystal

structure of RF3�GDP and the EM density of RF3 in

the GTP form indicates that the two structures are

(B) Effects of RF3 mutations on the recycling rates of RF2. The tetrapep-

tide (MFTI) released from the RC (50 nM) as a result of recycling of RF2

(1.2 nM) in the presence of RF3 or its mutants in excess (200 nM) is plot-

ted against time.

(C) Effect of RF3 mutations on the rate of GDP exchange monitored by

the decrease of mant-GDP fluorescence at 440 nm as mant-GDP from

RF3-mant-GDP complex (1 mM) was chased by unlabeled GDP

(0.2 mM) in the presence of RC (200 nM) and RF2 (1 mM).
Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc. 933



Figure 3. Peptide-free RC Bound with

RF3�GDPNP

(A) Side view.

(B) Top view. RF3 (red) is located at the en-

trance of the intersubunit space between the

30S (yellow) and the 50S (blue) ribosomal sub-

units. The tRNA (green) is in the hybrid P/E site.

bk indicates beak; sh indicates shoulder; CP in-

dicates central protuberance; GAC indicates

GTPase-associated center; P/E indicates hy-

brid P/E-site tRNA; and RF3 indicates release

factor 3.

(C) Stereo view of crystal structure of RF3�GDP

superposed with the density of RF3�GDPNP.

(D) Stereo view of model of RF3�GDPNP.

(E) Superposition of crystal structure of

RF3�GDP (green) and model of RF3�GDPNP

(yellow). In (C) and (D), EM density of

RF3�GDPNP is in semitransparent red, and

atomic structures of RF3 are colored as: domain

I, red; domain II, blue; and domain III, green.
significantly different (CC = 0.42). While domain I of the

crystal structure directly fits into the EM density map, do-

mains II and III require additional arrangement (Figure 3C).

Thus, the crystal structure of RF3�GDP was docked into

the EM density as three rigid pieces by allowing relative

domain movement in the factor, thereby increasing the

CC to 0.72 (Figure 3D). In addition, the 70S ribosome

was fitted (CC = 0.72) as multiple rigid pieces according

to a previously developed rigid-body assignment (Gao

et al., 2003; also see Experimental Procedures).

Besides the RF3-bound RC in the GTP form, docking

was also applied to the EM density maps of functionally
934 Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc.
important ribosomal termination complexes from previous

studies (Rawat et al., 2003, 2006), including (i) a control

density map of the RC, (ii) RF1-bound RC, and (iii) RF2-

bound RC (both ‘‘after’’ peptidyl-tRNA hydrolysis). The

final fitting statistics for all the complexes (CC > 0.7, R fac-

tor �0.2) shows good overall fitting of the structural

models into their EM density maps (Table S3).

Molecular Interpretation of RF3’s GTPase Activity

Starting from the crystal structure of RF3�GDP, the model

of RF3 in the GTP form was obtained by large translational

and rotational movements of both domains II and III relative



Figure 4. Molecular Interactions of RF3�GDPNP with the 70S Ribosome

Stereo views showing interactions of (A) domains II and III of RF3 with helix 5 (orange) and protein S12 (cyan) from the 30S subunit and (B) domain I of

RF3 with SRL (teal) and protein L6 (purple) from the 50S subunit. The guanine nucleotide-binding site is indicated by an asterisk. S12 indicates protein

S12; h5 indicates helix 5; SRL indicates sarcin-ricin loop; L6 indicates protein L6; and His 92 indicates residue His92.
to domain I. The maximum displacement of 36 Å occurs in

domain III near the C-terminal (Figure 3E) and is similar to

the domain IV movement from the GDP form of free EF-G

to its ribosome-bound GTP form (Valle et al., 2003).

The interaction of RF3 in the GTP form with the peptide-

free RC involves all three domains of RF3, as well as the

30S and 50S subunits (Figure 4). RF3 binds to the 30S

subunit in the region of helix 5 of 16S rRNA and ribosomal

protein S12, a region known as a conserved binding site

for several protein factors (Spahn et al., 2001; Valle

et al., 2002). Helix 5 interacts with domains II and III of

RF3, and protein S12 forms extensive contacts with do-

main III. In the 50S subunit, as expected, the G domain

of RF3 interacts with the SRL and protein L6, consistent

with the G domain locations of other translational

GTPases. The guanine nucleotide-binding site, located

near Lys143 and Leu260 in domain I of RF3 (Figure 1G),

is less than 10 Å away from, and thereby closest to, the

SRL (Figure 4B). The conserved residue His92 in the

switch 2 region also lies close to the SRL (Figure 4B),

which is important for GDP exchange on ribosome-bound

RF3 (Table S2) and essential for the recycling function of

this factor (Table S1).
While the EM density of RF3 in the GTP form accommo-

dates all three domains from the crystal structure quite

well, there is a partial ‘‘arc-like’’ density appearing at the

far end of domain I (Figure 4), which cannot be fitted with

the crystal structure. Similar arc-like densities have been

spotted in cryo-EM reconstructions of ribosome-bound

forms of the other three translational GTPases: EF-G

(Agrawal et al., 1998, 1999), EF-Tu (Stark et al., 1997; Valle

et al., 2002), and IF2 (Allen et al., 2005). These arcs were in-

terpreted as connections between the respective factor’s

G (or G0) domain and either the N-terminal domain (NTD)

of L11 (Agrawal et al., 2001) or the C-terminal domain

(CTD) of L7/L12 (Allen et al., 2005).

RF3-Induced Conformational Changes

of the Ribosome

To investigate the RF3-induced conformational changes of

the ribosome, we compared the density map of the RF3-

bound RC from this study with the previous maps of the

RC itself and of RC bound with RF1/RF2 (Rawat et al.,

2003, 2006). Superposition of these maps immediately

revealed significant conformational changes in both the

small and large ribosomal subunits of the RF3-bound
Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc. 935



Figure 5. Ribosomal Conformational Changes upon Binding of RF3�GDPNP

(A–C) Comparison of the 30S subunit of RF3-bound RC (solid yellow) with the 30S subunits (semitransparent purple) of (A) RC, (B) RF1-bound RC,

and (C) RF2-bound RC. The ratchet-like rotation is indicated by the pair of arrows.

(D–F) Comparison of the 50S subunit of RF3-bound RC (solid blue) with the 50S subunits (semitransparent green) of (D) RC, (E) RF1-bound RC, and (F)

RF2-bound RC. The inward movement of the L1 stalk and the outward movement of the GAC in the RF3-bound RC are marked by black and red

arrows, respectively.
RC. As shown in Figure 5, compared with the other three

density maps, in the RF3-bound RC, the 30S subunit

shows a 10� ratchet-like rotation, while the L1 stalk in the

50S subunit flexes about 20� toward the central protuber-

ance (CP). Both conformational changes are virtually iden-

tical to those observed previously in a ribosome complex

with EF-G in the GTP form (Valle et al., 2003).

Besides the ratcheting motion and the flexing move-

ment of the L1 stalk, binding of RF3 to the peptide-free

RC also induces significant conformational changes in

the GAC regions in the above four density maps (Figure 5).

Recent studies showed that the binding of RF1/RF2 to the

RC induces a 6 Å inward curling of the entire GAC region

toward PTC (Rawat et al., 2006), which was suggested

to promote the exchange of GDP to GTP in RF3 (Mora

et al., 2003). It appears that the GAC in the RF3-bound

RC is not in the same inward-curled position as in the

maps of RF1- and RF2-bound RC. Instead, its GAC posi-

tion matches with the one found in the density map of RC,

indicating that the binding of RF3 in the GTP form to the

peptide-free RC in fact reverses the movement of GAC

that occurred upon binding of RF1 or RF2.

RF3-Induced Release of RF1 and RF2

from the Ribosome

In an attempt to identify the mechanism by which RF3

induces dissociation of class I release factors from the
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ribosome after peptide release, we first compared the

ribosomal binding sites of RF3�GDPNP with those of

RF1 and RF2. Positioning of the structural model of

RF3�GDPNP into the EM density maps of RC bound

with RF1 or RF2 (Rawat et al., 2003, 2006) clearly showed

that there is no overlap between the ribosomal binding

sites of RF3 and RF1/RF2 (Figure 6). The only possible in-

teraction is between domain III of RF3 and domain I of

RF1/RF2, as measured by the closest distance of 9 Å be-

tween Ca atoms. Considering the ratchet-like rotation in

the 30S subunit upon binding of RF3 in the GTP form,

the spatial location of RF3 is also affected. If we counter-

act the ratchet-like rotation by rotationally aligning the 30S

ribosomal subunits, the relative positions between the

RF3 and the two class I RFs are even more separated

(Figure S3). Another comparison, with the recent T. ther-

mophilus crystal structures of RF1 or RF2 bound to the

ribosome (Petry et al., 2005), confirms that the two classes

of RFs do not compete for a common ribosomal binding

site (Figure S4).

To further elucidate the mechanism of the rapid dissoci-

ation of RF1 or RF2 promoted by RF3, we focus on the

conformational changes that occur in the ribosome upon

the binding of class I and class II RFs. Structural studies

have shown that both class I RFs bind to three functionally

important centers on the ribosome, i.e., the DC, the PTC,

and the GAC, involving domains II, III, and I of the factors,



Figure 6. Relative Positions of RF1/RF2 and RF3 on the Ribosome

Density and model of RF3�GDPNP are placed into (A) RF1-bound RC (Rawat et al., 2006) and (B) RF2-bound RC (Rawat et al., 2003). Ribosomal

subunits are shown in semitransparent blue (50S) and yellow (30S), respectively. Densities of RF1 (orange), RF2 (pink), and RF3 (red) are rendered

in wire mesh, and structural models of RF1 (2FVO), RF2 (1GQE), and RF3�GDPNP (same color code as in Figure 4) are in ribbons.
respectively (Rawat et al., 2003, 2006; Petry et al., 2005).

In order for RF1 or RF2 to dissociate from the ribosome,

it is expected that the interactions between the factor

and the ribosome in these regions are the first to be dis-

rupted. Indeed, according to the atomic models of the

ribosome obtained by real-space refinement fitting,

upon binding of RF3�GDPNP, significant ribosomal con-

formational changes are observed in the regions of the

DC and the GAC, two of the three known factor-binding

sites (Figure S5). First, as we go from the RC bound with

RF1 or RF2 to the peptide-free RC bound with RF3, the

DC, riding with the ratchet-like motion of the 30S ribo-

somal subunit, moves away by 6 Å from the binding site

with domain II of RF1 and RF2. Second, as described ear-

lier, the different positions of the GAC, deduced from the

maps of the RC bound with RF1/RF2 and the peptide-

free RC bound with RF3, indicate a GAC movement

away (�6 Å) from the binding site with domain I of RF1/

RF2. It is, we suggest, the RF3-induced interruption of

this interaction between the GAC and the class I RF that

promotes its rapid dissociation. As far as the PTC, the

third binding site of RF1 and RF2, is concerned, no signif-

icant change was observed upon the binding of RF3 to the

ribosome. It is likely that the interaction between the PTC

and domain III of RF1/RF2 is only required for hydrolysis of

the ester bond in peptidyl-tRNA. Once the polypeptide is

released, such an interaction would no longer be required.

DISCUSSION

Based on our structural analyses and the new biochemical

data, we propose a model for the RF3-mediated termina-

tion mechanism in which the prior binding of RF1 or RF2

to the RC induces the cleavage of polypeptide from the

P-site tRNA and thereby ‘‘unlocks’’ the ribosome, in the

sense (Valle et al., 2003) that the ratchet motion now be-

comes possible while it was blocked before.
First, RF3 in the GDP form binds to the ribosome with low

affinity. Subsequently, the dissociation of GDP from RF3 is

catalyzed by the RC containing a class I release factor.

From sequence conservation mapping, we have identified

a set of functionally important residues, including H311

and R452 in the domain II/III interface on the surface of

RF3. When either H311 or R452 is changed to Ala, the

RC-dependent, but not the spontaneous GDP-to-GDP,

exchange rate on RF3 is greatly reduced (Table S2). These

observations can be explained as being due to an H311-

and R452-dependent stabilization of the guanine nucleo-

tide-free form of RF3 with low affinity for GDP, which would

promote rapid GDP dissociation from ribosome-bound

RF3 (Freistroffer et al., 1997; Zavialov et al., 2001). In this

scenario, the two mutations fail to stabilize the nucleo-

tide-free form of RF3, thereby greatly reducing the dissoci-

ation rate of GDP, as observed (Figure 2C).

After dissociation of GDP, GTP rapidly binds to the

guanine nucleotide-free state of RF3. This event induces

conformational changes both in RF3, created by the ex-

tended movement of domains II and III, and in the ribo-

some, characterized by the ratchet-like movement of the

small relative to the large subunit accompanied by move-

ments of the L1 stalk and the GAC. Formation of this high-

affinity complex between RF3�GTP and the peptide-free

RC (Zavialov et al., 2001) breaks the interactions between

the ribosome and RF1/RF2 in the region of DC and GAC,

ultimately causing the release of RF1/RF2. Finally, GTP

hydrolysis causes RF3 to switch back to its low-affinity

GDP form, which triggers its rapid dissociation from the

ribosome. Simultaneously, both the ratchet-like movement

and the movement of L1 are reversed, which brings the

ribosome back to the same conformation as seen in RC.

This second part of our model is strongly supported by

the mutational study on the conserved residues located

on the interface of domains II and III of RF3�GDP. Our

kinetic data show that the H311A or R452A mutations
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Figure 7. Structural Interpretation of the Mutation Study of RF3-Ribosome Interaction

The boundary of the EM density for the 30S subunit of the RF3-bound RC is shown by semitransparent contour mesh in yellow. Its atomic model

(rRNA, yellow; protein, green) was obtained by real-space refinement. Atomic models of RF1 (orange), RF2 (pink), and RF3�GDPNP (cyan) are ren-

dered in ribbons. Residues E456, R452, and H311 (red) appear near the 30S ribosomal binding site, and residues E396 and Q445 (green) are away

from the 30S ribosomal binding site.
strongly (though to a different degree) reduce the GDP ex-

change rate for RC-bound RF3 (Table S2). However, these

effects are far too small to account for the very large, vir-

tually uniform increase in the total class I RF recycling

time caused by these H311A or R452A mutations

(Figure 2B; Table S1). From this fact we infer that the

H311A and R452A mutations must affect two steps in

the action cycle of RF3, i.e., (1) decreasing the rate of

GDP dissociation from RF3 bound to a class I RF contain-

ing RC or (2) decreasing the rate of a subsequent rate-

limiting step for class I RF recycling after peptide release.

We note further that the E456A mutation moderately

reduces the recycling activity of RF3, while the E396A

and Q445A mutations do not have a significant effect on

it (Figure 2B; Table S1). According to our structural model

for ribosome-bound RF3 in the GTP form, residues H311,

R452, and E456 are expected to be in direct contact with

the 30S subunit (Figure 7). It is therefore conceivable that

the mutations in these residues will interfere with the bind-

ing of RF3 in the GTP form to the ribosome, as well as with

the induction of these ribosomal conformational changes,

which we suggest are responsible for the RF3-induced

rapid dissociation of RF1/RF2. In contrast, the locations

of E396 and Q445 are away from the ribosomal binding

site and exposed to the solvent (Figure 7). Evidently, these

latter sites are not involved in ribosomal binding, nor do

they have an impact on the recycling of RF1 and RF2.

Concerning the H92A P90Q double mutant of RF3, the

RC-dependent GDP to GDP exchange rate is reduced

30-fold (Table S2), and the overall RF3 recycling activity

is virtually zero (Figure 2B; Table S1). It is unlikely that these

effects are primarily caused by perturbed interactions be-

tween RF3 and a class I RF or the ribosome. Instead, we
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suggest that the H92A P90Q variant of RF3 is locked in

a conformation similar to, but not identical with, the GDP

form of wild-type RF3. Its failure to adopt the authentic

guanine nucleotide-free form of RF3 on the ribosome ex-

plains, we suggest, why the ribosome-dependent GDP-

to-GDP exchange rate is reduced 30-fold in relation to

the wild-type rate (Table S2). The subsequent failure of

H92A P90Q to adopt the authentic GTP form of wild-type

RF3 would explain, following this hypothesis, why the class

I RF recycling activity of the H92A P90Q RF3 mutant is

virtually zero.

We have seen here how the binding of RF3�GDPNP to

the peptide-free RC drives the ratchet-like conformational

change of the ribosome, the swivel motion of the L1 stalk,

and the movement of the deacylated tRNA from the P to

the hybrid P/E site (Figures 3 and 5). It is noteworthy that

these changes are very similar to the conformational

changes previously observed in the case of EF-G�GDPNP

binding to an unlocked ribosome (Valle et al., 2003).

Besides, depending on their GTP and GDP forms, both

RF3 and EF-G bind to the ribosome with high affinity in

an extended conformation and with low affinity in the com-

pact conformation. These structural similarities imply the

existence of a general mechanism underlying both RF3-

dependent termination and EF-G-dependent transloca-

tion in which the ratcheting motion in the ribosome plays

a key role.

Compared with the previous cryo-EM study by Klaholz

et al. (2004) in which the complex of RF3-bound RC was

reported to assume two different conformations, the

structure we present in this study not only demonstrates

a significantly improved resolution but, more importantly,

shows a stable, single conformation highly consistent



with the biochemical data. Furthermore, the newly solved

X-ray structure of RF3 has now allowed us to build an au-

thentic model of RF3 bound to RC in the GTP state and to

describe an RF3-mediated termination mechanism that is

strongly supported by the new biochemical data pre-

sented in this study. In contrast, the molecular interpreta-

tion of RF3 by Klaholz et al. (2004) was limited by the use of

EF-G as a homolog and is now proven to be inaccurate by

the X-ray structure that shows that the structural similarity

between RF3 and EF-G is limited to domains I and II.

EXPERIMENTAL PROCEDURES

Structure Determination of RF3�GDP

SeMet MAD data were collected at three wavelengths on beamline

BW7A at EMBL (Hamburg, Germany) using a MarCCD detector and

processed with Mosflm (CCP4, 1994). Crystals belong to space group

P212121, with the cell parameters of a = 73.17 Å, b = 239.78 Å, and

c = 69.68 Å, and contain two molecule per asymmetric unit (AU).

The structure of RF3�GDP was determined by MAD method. Heavy

atom search and refinement were carried out using the SnB (Miller

et al., 1994) and SHARP (De la Fortelle and Bricogne, 1997), respec-

tively. About 80% of the final model was built automatically using

ARP/wARP (Perrakis et al., 1999); the rest was built manually using

O (Jones et al., 1991). The model was refined using CNS (Brunger

et al., 1998) and REFMAC5 (Murshudov et al., 1997). Neither molecule

A nor B of the AU contained Mg2+, and each of them contained one

GDP molecule, although the crystallization buffer contained 5 mM

Mg2+ and lacked nucleotides. Residues 1–2, 39–69, 351–355, and

407–409 for molecule A and 38–69, 305–312, 350–354, and 405–408

for molecule B in the AU are disordered. The final refinement statistics

are summarized in Table S4.

Site-Directed Mutagenesis and Recycling of RF1/RF2 by RF3

All the RF3 mutants were created using the QuickChange mutagenesis

kit (Stratagene) and purified using same methods as wild-type RF3.

These are H92A P90Q, H311A, R312A, E396A, Q445A, V448A,

R452A, E456A, Y457A, and P90Q, respectively. The RC with a UAA

stop codon in the A site and a MFTI-tRNA in the P site was prepared

as described (Bouakaz et al., 2006), and the recycling of the release

factors RF1 (5 nM) and RF2 (1.2 nM) on RC (50 nM) in the presence

of excess wild-type (WT) or the mutant RF3s (200 nM) was done as

described (Zavialov et al., 2001).

GDP Exchange on RF3

To study GDP exchange on wild-type RF3 and its mutants (H92A

P90Q, P90Q, H311A, and R452A), 1 mM RF3 was incubated with

2 mM mant-GDP, a fluorescent derivative of GDP (Moore et al., 1992;

Zhang et al., 2005), at 37�C for 10 min in a 13 Hepes-polymix buffer

containing 10 mM Hepes, 5 mM magnesium acetate, 5 mM ammonium

chloride, 95 mM potassium chloride, 0.5 mM calcium chloride, 8 mM

putrescine, 1 mM spermidine, and 1 mM dithioerythritol. This complex

was chased by 200 mM GDP in the absence or presence of 200 nM RC

(fMet-UAA) preincubated with 1 mM RF2 at 37�C for 10 min. The rate of

GDP exchange was monitored by measuring the decrease of mant-

GDP fluorescence at 440 nm with time in a stopped-flow apparatus.

In parallel, GDP exchange was also measured by nitrocellulose filter-

binding assay using RF3$[3H]GDP complex (Zavialov et al., 2001).

Cryo-EM and Image Processing

RCs were prepared as described (Zavialov et al., 2001). Two micromo-

lar RF3 was incubated with 0.5 mM GDPNP, and 0.16 mM RC was

treated with 0.8 mM puromycin, both at 37�C for 10 min in polymix

buffer. All the reaction components were mixed and incubated at

37�C for 5 min. Occupancy of RF3 on the ribosome was estimated
as 80% by nitrocellulose filter-binding of the RF3� [3H]-GDPNP�RC

(Zavialov et al., 2001). The above reaction mixture was diluted to a ribo-

some concentration of 32 nM and transferred to cryo-grids in cold

room at 4�C.

EM data were collected on a FEI Tecnai F20 at 200 kV with an electron

dose of 20 e�/Å2 and a magnification of 49,6503. Micrographs were

digitized on a Zeiss/Imaging scanner (Z/I Imaging Corporation, Hunts-

ville, Alabama) with a step size of 14 mm, corresponding to 2.82 Å on the

object scale. Forty-five thousand particle images were subjected to the

reference-based 3D reconstruction using SPIDER (Frank et al., 1996).

Resolution of the refined and CTF-corrected density map was 15.5 Å

or 9.7 Å, according to the Fourier Shell Correlation criterion, using cutoff

value of 0.5 or 3s, respectively. Fourier amplitudes were corrected

using the X-ray solution scattering data as described (Gabashvili

et al., 2000). Figures were prepared with IRIS EXPLORER (Numerical

Algorithms Group, Downers Grove, IL), VMD (Humphrey et al., 1996),

and PyMOL (DeLano Scientific, San Carlos, CA).

Real-Space Refinement

Docking was performed using real-space refinement implemented in

RSRef (Chapman, 1995) and TNT (Tronrud et al., 1987). A multi-rigid-

body refinement scheme was employed (Gao et al., 2003). RF3 was fit-

ted as three rigid pieces according to the factor’s domain divisions.

The 70S ribosome (PDB entry: 2AVY/2AW4) was fitted as a total of

157 rigid pieces in which RNAs were divided according to their sec-

ondary structure (Gao et al., 2003), and each ribosomal protein was

treated as single rigid piece.

Supplemental Data

Supplemental Data include Experimental Procedures, four tables, five

figures, and one movie and can be found with this article online at

http://www.cell.com/cgi/content/full/129/5/929/DC1/.
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M.E. and S.S.), and by Göran Gustafsson Stiftelse (to S.S.), as well

as by the Agency for Science, Technology, and Research (A*Star) in

Singapore (to H.S.).

Received: August 22, 2006

Revised: February 6, 2007

Accepted: March 13, 2007

Published: May 31, 2007

REFERENCES

Agrawal, R.K., Penczek, P., Grassucci, R.A., and Frank, J. (1998). Visu-

alization of elongation factor G on the Escherichia coli 70S ribosome:

the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95,

6134–6138.

Agrawal, R.K., Heagle, A.B., Penczek, P., Grassucci, R.A., and

Frank, J. (1999). EF-G-dependent GTP hydrolysis induces transloca-

tion accompanied by large conformational changes in the 70S ribo-

some. Nat. Struct. Biol. 6, 643–647.

Agrawal, R.K., Linde, J., Sengupta, J., Nierhaus, K.H., and Frank, J.

(2001). Localization of L11 protein and elucidation of its involvement

in EF-G-dependent translocation. J. Mol. Biol. 311, 777–787.

Allen, G.S., Zavialov, A., Gursky, R., Ehrenberg, M., and Frank, J.

(2005). The cryo-EM structure of a translation initiation complex from

Escherichia coli. Cell 121, 703–712.
Cell 129, 929–941, June 1, 2007 ª2007 Elsevier Inc. 939

http://www.cell.com/cgi/content/full/129/5/929/DC1/


Bouakaz, L., Bouakaz, E., Murgola, E.J., Ehrenberg, M., and Sanyal, S.

(2006). The role of ribosomal protein L11 in class I release factor-

mediated translation termination and translational accuracy. J. Biol.

Chem. 281, 4548–4556.

Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P.,

Grosse-Kunstleve, R.W., Jiang, J.-S., Nilges, N., Pannu, N.S., Read,

R.J., et al. (1998). Crystallography and NMR system (CNS): A new soft-

ware system for macromolecular structure determination. Acta Crys-

tallogr. D54, 905–921.

CCP4. (1994). The CCP4 suite: programs for protein crystallography.

Acta Crystallogr. D50, 760–763.

Chapman, M.S. (1995). Restrained real-space macromolecular atomic

refinement using a new resolution-dependent electron-density func-

tion. Acta Crystallogr. A51, 69–80.

Czworkowski, J., Wang, J., Steitz, T.A., and Moore, P.B. (1994). The

crystal structure of elongation factor G complexed with GDP, at 2.7

A resolution. EMBO J. 13, 3661–3668.

De la Fortelle, E., and Bricogne, G. (1997). Maximum-likelihood heavy-

atom parameter refinement for multiple isomorphous replacement and

multiwavelength anomalous diffraction method. Meth. Enzymol. 276,

472–494.

Frank, J., and Agrawal, R.K. (2000). A ratchet-like inter-subunit reorga-

nization of the ribosome during translocation. Nature 406, 318–322.

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M.,

and Leith, A. (1996). SPIDER and WEB: processing and visualization

of images in 3D electron microscopy and related fields. J. Struct.

Biol. 116, 190–199.

Freistroffer, D., Pavlov, M.Y., MacDougall, J., Buckingham, R.H., and

Ehrenberg, M. (1997). Release factor RF3 in E.coli accelerates the dis-

sociation of release factors RF1 and RF2 from the ribosome in a GTP-

dependent manner. EMBO J. 16, 4126–4133.

Frolova, L., Le Goff, X., Rasmussen, H.H., Cheperegin, S., Drugeon,

G., Kress, M., Arman, I., Haenni, A.L., Celis, J.E., Philippe, M., et al.

(1994). A highly conserved eukaryotic protein family possessing prop-

erties of polypeptide chain release factor. Nature 372, 701–703.

Gabashvili, I.S., Agrawal, R.K., Spahn, C.M.T., Grassucci, R.A., Frank,

J., and Penczek, P. (2000). Solution structure of the E.coli 70S ribo-
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